Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

J. M. S. Skakle, ${ }^{\text {a }}$ M. R. St J. Foreman, ${ }^{\text {a }}$ M. J. Plater ${ }^{\text {a }}$ and C. Griffin ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and ${ }^{\mathbf{b}}$ School of Physics, University of Aberdeen, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: j.skakle@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.071$
Data-to-parameter ratio $=19.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[[diaquacadmium(II)]- μ^{3}-(1-carboxybenzene-3,5dicarboxylato)]

The crystal structure of the title complex, poly[[diaquacadmium $(\mathrm{II})]-\mu^{3}$-(1-carboxybenzene-3,5-dicarboxylato- O^{1} :$\left.\left.O^{3}, O^{3^{\prime}}: O^{5}, O^{5^{\prime}}\right)\right],\left[\mathrm{Cd}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, features two-dimensional polymeric network layers which are hydrogen-bonded to one another. The Cd atom is coordinated by seven O atoms, two of which belong to water molecules arranged trans to each other, above and below the layers. Each polymeric layer is tiled with $(\mathrm{Cd})_{3}\left(\mathrm{C}_{9} \mathrm{O}_{6}\right)_{3}$ rings formed by alternating Cd atoms and $\left(\mathrm{C}_{9} \mathrm{O}_{6}\right)$ ligands. The layers are parallel to the $\overline{1} 01$ crystal plane and the neighbouring layers are separated by 3.2508 (2) \AA.

Comment

$\left[\mathrm{Cd}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, (I), was synthesized as part of a study into polymeric compounds containing metals and benzene-1,3,5-tricarboxylic acid (BTC) (Plater et al., 1997, 1998, 1999; Yaghi et al., 1996).

The title compound was shown to be polymeric, with the Cd atom coordinated to seven O atoms, the $\mathrm{Cd}-\mathrm{O}$ bond lengths varying in the range 2.2479 (18) -2.5557 (16) \AA (Fig. 1 and Table 1), thus showing good agreement with previously reported $\mathrm{Cd}-\mathrm{O}$ values.

The O atoms coordinating each metal atom belong to three BTC molecules; two of these are bonded via bidentate chelating carboxylate groups ($\mathrm{C} 1 / \mathrm{O} 1 / \mathrm{O} 2$ and $\mathrm{C} 8 / \mathrm{O} 5 / \mathrm{O} 6$), whilst the third one is coordinated in a monodentate manner through its carboxylic carbonyl O 3 atom. Each Cd atom is also bonded to two water molecules.

The Cd atoms and BTC ligands form a two-dimensional infinite network tiled with 'macrocycles', each comprising three Cd atoms and three BTC groups (Fig. 2). The layers are parallel to the $\overline{1} 01$ plane, the distance between the planes of neighbouring layers being equal to 3.2508 (2) Å. Water molecules are located between the layers with the $\mathrm{Cd}-\mathrm{O} 7$ and $\mathrm{Cd}-\mathrm{O} 8$ vectors approximately perpendicular to the network layer planes (inclination angles are 90 and 85° for $\mathrm{Cd}-\mathrm{O} 7$ and $\mathrm{Cd}-\mathrm{O} 8$ respectively; Fig. 3).

Received 12 January 2001 Accepted 26 January 2001 Online 30 January 2001

Figure 1
Asymmetric unit of the title compound. Ellipsoids are shown at 50% probability. O atoms related by symmetry are included to show the coordination sphere for Cd (symmetry transformations are as in Table 1)

Figure 2
A fragment of polymeric network Cd-BTC layer in the crystal of the title compound.

The C5/O3/O4 carboxylic group hydrogen (H4) was objectively located from the difference Fourier map; it participates in the intra-layer hydrogen bond with one of the carboxylate O atoms (O1). The position of this carboxylic H atom is consistent with the $\mathrm{C}-\mathrm{O}$ bond lengths values (see Table 1) and IR data. In contrast, the H atoms of water molecules are responsible for inter-layer hydrogen bonding (Table 2).

Experimental

Benzene-1,3,5-tricarboxylic acid (99.4 mg), cadmium acetate $(128 \mathrm{mg})$ and water $(10 \mathrm{ml})$ were placed inside a 23 ml Parr bomb. Once sealed, the bomb was heated to 483 K at $100 \mathrm{~K} \mathrm{~h}^{-1}$. After maintaining this temperature for 2 h , the bomb was cooled to 463 K at $5 \mathrm{~K} \mathrm{~h}^{-1}$, and after 6 h at 463 K was cooled to room temperature at $4 \mathrm{~K} \mathrm{~h}^{-1}$. The bomb was opened and the colourless solid collected by filtration, washed with water and dried in air. IR spectra were obtained using a pressed KBr disk, using the ATI FT-IR system (Mattson Genesis series).

Figure 3
The 010 plane, showing orientation of $\mathrm{Cd}-\mathrm{BTC}$ layers within the unit cell with $\mathrm{Cd}-\mathrm{H}_{2} \mathrm{O}$ bonds perpendicular to the layers.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=356.55$
Monoclinic, C2/c
$a=19.7328$ (9) £
$b=9.1088$ (4) \AA
$c=13.3636$ (6) \AA
$\beta=117.884(1)^{\circ}$
$V=2123.12(16) \AA^{3}$
$Z=8$

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min }=0.679, T_{\max }=0.928$
9718 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.071$
$S=0.97$
3512 reflections
178 parameters
$D_{x}=2.225 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5038

reflections

$\theta=2.5-31.5^{\circ}$
$\mu=2.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.3 \times 0.1 \times 0.1 \mathrm{~mm}$

3512 independent reflections
2892 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=31.5^{\circ}$
$h=-27 \rightarrow 28$
$k=-13 \rightarrow 11$
$l=-19 \rightarrow 18$

H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0443 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=1.50 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {max }}=-1.24 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Cd1-O1	2.2851 (15)	C1-O1	1.269 (2)
$\mathrm{Cd} 1-\mathrm{O} 2$	2.5557 (16)	$\mathrm{C} 1-\mathrm{O} 2$	1.247 (3)
$\mathrm{Cd} 1-\mathrm{O} 3^{\text {i }}$	2.3011 (16)	C5-O3	1.223 (3)
$\mathrm{Cd} 1-\mathrm{O} 5^{\text {ii }}$	2.5225 (17)	C5-O4	1.305 (3)
Cd1-O6 ${ }^{\text {ii }}$	2.2479 (18)	C8-O5	1.251 (2)
Cd1-O7	2.381 (2)	C8-O6	1.273 (2)
Cd1-O8	2.309 (2)		
$\mathrm{O} 6^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 1$	145.90 (6)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O}^{\text {ii }}$	159.34 (6)
$\mathrm{O} 6^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O}^{\text {i }}$	134.03 (6)	$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 5^{\text {ii }}$	79.73 (6)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O}^{\text {i }}$	80.04 (6)	$\mathrm{O} 8-\mathrm{Cd} 1-\mathrm{O} 5{ }^{\text {ii }}$	88.84 (8)
$\mathrm{O} 6^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 8$	89.15 (7)	$\mathrm{O} 7-\mathrm{Cd} 1-\mathrm{O} 5^{\text {ii }}$	93.00 (7)
O1-Cd1-O8	88.82 (8)	$\mathrm{O} 6^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 2$	92.51 (6)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 8$	95.22 (8)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2$	53.42 (5)
$\mathrm{O} 6^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 7$	89.16 (7)	$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2$	133.45 (6)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 7$	90.64 (7)	$\mathrm{O} 8-\mathrm{Cd} 1-\mathrm{O} 2$	84.56 (7)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 7$	88.46 (8)	$\mathrm{O} 7-\mathrm{Cd} 1-\mathrm{O} 2$	92.04 (7)
O8-Cd1-O7	176.13 (8)	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 2$	146.56 (5)
$\mathrm{O} 6^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 5^{\mathrm{ii}}$	54.57 (6)		

Symmetry codes: (i) $x, y-1, z$; (ii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$.

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O}{ }^{\text {i }}$	0.73 (5)	2.11 (5)	2.836 (3)	176 (5)
$\mathrm{O} 7-\mathrm{H} 7 B \cdots 5^{\text {ii }}$	0.63 (4)	2.24 (4)	2.867 (3)	170 (5)
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 6^{\text {iiii }}$	0.78 (4)	1.95 (4)	2.730 (3)	175 (4)
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\text {iv }}$	0.66 (4)	2.39 (4)	3.044 (3)	167 (5)
$\mathrm{O} 4-\mathrm{H} 4 \cdots{ }^{\text {v }}$	0.92 (3)	1.71 (3)	2.604 (2)	164 (3)

Symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $1-x, 2-y,-z$; (iii) $1-x, y, \frac{1}{2}-z$; (iv) $x, 1-y, \frac{1}{2}+z$; (v) $x, 1+y, z$.

The carboxylic acid and water H atoms ($\mathrm{H} 4, \mathrm{H} 7 A, \mathrm{H} 7 B, \mathrm{H} 8 A$ and $\mathrm{H} 8 B$) were located in the difference map and were refined isotropically. Other H atoms were placed in geometrically calculated positions and included in the refinement in the riding model approximation. The highest residual density value was 1.50 e \AA^{-3} at $0.53 \AA$ from O6.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX in OSCAIL (McArdle, 1994, 2000), ATOMS (Dowty, 1999)
and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We wish to acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996). JMSS and CG would also like to thank R. A. Howie for helpful discussions.

References

Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (1999). ATOMS for Windows. Version 5.0.7. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
McArdle, P. (2000). OSCAIL for Windows. National University of Ireland, Galway, Ireland.
Plater, M. J., Foreman, M. R. St J., Coronado, E., Gomez-Garcia, C. J. \& Slawin, A. M. Z. (1999). J. Chem. Soc. Dalton Trans. 23, 4209-4216.
Plater, M. J., Roberts, A. J. \& Howie, R. A. (1997). J. Chem. Soc. Chem. Comтии. pp. 893-894.
Plater, M. J., Roberts, A. J., Marr, J., Lachowski, E. \& Howie, R. A. (1998). J. Chem. Soc. Dalton Trans. pp. 797-802.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Yaghi, O. M., Li, H. \& Groy, T. L. (1996). J. Am Chem. Soc. 118, 9096-9109.

